Bayesian Inference for Nonlinear Dynamical Systems — Applications and Software Implementation

نویسنده

  • Jerker Nordh
چکیده

The topic of this thesis is estimation of nonlinear dynamical systems, focusing on the use of methods such as particle filtering and smoothing. There are three areas of contributions: software implementation, applications of nonlinear estimation and some theoretical extensions to existing algorithms. The common theme for all the work presented is the pyParticleEst software framework, which has been developed by the author. It is a generic software framework to assist in the application of particle methods to new problems, and to make it easy to implement and test new methods on existing problems. The theoretical contributions are extensions to existing methods, specifically the Auxiliary Particle Filter and the Metropolis Hastings Improved Particle Smoother, to handle mixed linear/nonlinear models using RaoBlackwellized methods. This work was motivated by the desire to have a coherent set of methods and model-classes in the software framework so that all algorithms can be applied to all applicable types of models. There are three applications of these methods discussed in the thesis. The first is the modeling of periodic autonomous signals by describing them as the output of a second order system. The second is nonlinear grey-box system identification of a quadruple-tank laboratory process. The third is simultaneous localization and mapping for indoor navigation using ultrasonic range-finders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of dynamical inference to the analysis of noisy biological time series with hidden dynamical variables

We present a Bayesian framework for parameter inference in noisy, non-stationary, nonlinear, dynamical systems. The technique is implemented in two distinct ways: (i) Lightweight implementation: to be used for on-line analysis, allowing multiple parameter estimation, optimal compensation for dynamical noise, and reconstruction by integration of the hidden dynamical variables, but with some limi...

متن کامل

Dynamical Analysis of Bayesian Inference Models for the Eriksen Task

The Eriksen task is a classical paradigm that explores the effects of competing sensory inputs on response tendencies and the nature of selective attention in controlling these processes. In this task, conflicting flanker stimuli interfere with the processing of a central target, especially on short reaction time trials. This task has been modeled by neural networks and more recently by a norma...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Causal network inference using biochemical kinetics

MOTIVATION Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems. RESULTS W...

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015